

ESTADO NUTRICIONAL DO CAPIM-TANZÂNIA IRRIGADO SOB DOSES DE NITROGÊNIO E ALTURAS DE CORTE¹

<u>Tatiana Vieira Soares</u>², Aldi Fernandes de Souza França³, Alzira Gabriela da Silva⁴, Eliane Sayuri Miyagi⁵, Carlos Eduardo Dambros⁶

1 Parte da dissertação do primeiro autor.

- 2 Zootecnista, Mestre em Produção Animal pelo Programa de Pós-Graduação em Ciência Animal da EV /UFG, Goiânia-GO.
- 3 Professor titular, doutor, Departamento de Produção Animal EV/UFG, Goiânia, GO. Campus II. CEP 74.001-970 (aldi@vet.ufg.br)
 - 4 Zootecnista, Doutoranda do Programa de Pós-graduação em Ciência Animal EV/UFG, Goiânia, GO.
 - 5 Zootecnista, D.Sc.em Produção Animal, Bolsista PRODOC/CAPES-EV /UFG, Goiânia-GO.

6 Graduando de Medicina Veterinária – EV/UFG

RESUMO

Com o propósito de quantificar as concentrações foliares de macro e micronutrientes do *Panicum maximum* (Jacq.) cv Tanzânia submetido a adubação nitrogenada (200, 400 e 600 kg ha⁻¹ de N) e alturas de cortes (0,30 e 0,40 m) irrigado por aspersão, foi conduzido experimento em Latossolo Vermelho distrófico em Goiânia, GO. Utilizouse o delineamento experimental de blocos ao acaso com parcelas subdividas em esquema fatorial 3 x 2, com três repetições. Foram determinados os teores foliares dos macronutrientes: cálcio (Ca), enxofre (S), fósforo (P), magnésio (Mg) e potássio (K) e dos micronutrientes: cobre (Cu), ferro (Fe), manganês (Mn) e zinco (Zn). Os teores concentrados no período chuvoso foram superiores aos determinados no período seco em ambas alturas. As concentrações foliares de macro e micronutrientes não diferiram (P>0,05) em função das doses de nitrogênio e das alturas de corte, nos dois períodos do ano (chuvoso e seco).

PALAVRAS-CHAVE: altura residual, irrigação, minerais, *Panicum maximum*

NUTRITIONAL STATUS OF TANZÂNIA GRASS IRRIGATION UNDER NITROGEN DOSES AND CUTTING HEIGHTS

ABSTRACT

The objective this experiment was to quantify the macro and micronutrients concentrations leaf of the *Panicum maximum* cv Tanzânia on the nitrogen fertilization (200, 400 and 600 kg ha⁻¹) and cuts heightting (0,30 and 0,40 m) by aspersion. The experiment was conducted in dystrophic Red Latosol in Goiânia, GO. The randomized block design was in split splot in a 3 x 2 factorial arrangement, with three repetitions. The tenors leaf of the macronutrients had been determined: calcium (Ca), sulfur (S), phosphorus (P), magnesium (Mg) and potassium (K) and of the micronutrients: copper (Cu), iron (F), manganese (Mn) and zinc (Zn). The concentrated tenors in the rainy season had been superior to the determined ones in the dry season in both heights. The leaf concentrations of macro and

micronutrients had not differed (P>0.05) of the nitrogen doses function and the cut heights, in both periods (rainy and dry season).

KEYWORDS: irrigation, minerals, *Panicum maximum*, residual height

INTRODUÇÃO

As pastagens cultivadas constituem a forma mais econômica de alimentação dos bovinos e, como tal, desempenham papel de importância fundamental nos sistemas de produção de carne e de leite. Grande parte dessas pastagens encontram-se na região dos Cerrados (SANO et al., 1999), que se caracteriza por apresentar solos de baixa fertilidade e de elevada acidez (MARTHA JÚNIOR & VILELA, 2002) exploradas de maneira extrativista, com isso há necessidade de aprimorar o manejo e fazer o uso de medidas urgentes no sentido de se promover a recuperação ou até mesmo a renovação destas pastagens. Segundo PRIMAVESI (2004) a adubação em pastagens, principalmente a nitrogenada, está entre os fatores mais importantes a determinar a produção por área, entretanto, com o acréscimo na produtividade vegetal, ocorre uma maior extração de outros nutrientes do solo, que, se não forem repostos, podem limitar a eficiência da adubação nitrogenada.

Segundo McDOWELL (1999) o gado sob pastejo em países tropicais geralmente não recebe suplementação mineral, somente o sal comum e depende quase que exclusivamente das forrageiras para satisfazer seus requerimentos nutricionais. Entretanto, raramente essas forrageiras tropicais podem satisfazer adequadamente todos os requerimentos nutricionais. As carências minerais nos ruminantes surgem em decorrência da pobreza dos solos consequentemente das forragens, porém, nem sempre as deficiências minerais das pastagens resultam em sintomas drásticos definidos nos animais, mas o que se observa são deficiências marginais, com sintomas subclínicos, incapazes de serem facilmente identificados (TEBALDI et al., 1997).

A concentração mineral das plantas forrageiras depende da interação de vários fatores: solo, espécie forrageira, estado de maturidade, rendimento, manejo e clima. Na medida em que as plantas amadurecem, o conteúdo mineral declina em função de um processo natural de diluição e/ou translocação de nutrientes para o seu sistema radicular. Os teores de P, K, Mg e Na nas plantas comumente decrescem com o seu envelhecimento. Entretanto, o Ca é pouco afetado pelo avanço da maturidade da planta forrageira, resultando em aumento nocivo da relação desse elemento com outros minerais (McDOWELL, 1999). MELLO et al. (2003) destacaram que o estudo de minerais em plantas forrageiras vem merecendo atenção especial por parte da comunidade científica nas últimas décadas. Esse empenho é justificado pela grande variação regional dos teores dos nutrientes, os quais podem ser aumentados com a utilização de tecnologia, notadamente, em especial por meio da adubação balanceada (CHEEKE, 1991).

Dentre o manejo das pastagens, um fator que exerce grande influência sobre a perenidade das plantas forrageiras, é a altura ou intensidade de pastejo. Níveis de resíduos pós-pastejo muito baixos podem dificultar a rebrota da planta e ainda proporcionar menor desempenho animal. No entanto, apesar desses entraves SANTOS et al. (1999) relataram que as plantas manejadas com menores resíduos podem apresentar melhor qualidade nutricional, devido à maior renovação de tecidos.

A região Centro-Oeste apresenta duas estações do ano bem definidas: chuvosa e seca, tendo como conseqüência uma grande estacionalidade da produção de forragens. Como alternativa para minimizar esse efeito e aumentar a oferta de forragem na época da seca, entre outras técnicas, propõe-se o uso da irrigação. Embora a irrigação da pastagem possa determinar o incremento na produtividade em relação a situações de sequeiro, sabe-se que a técnica é onerosa, sinalizando que os fatores de produção devem ser utilizados da maneira mais eficiente possível (CORSI et al., 2001). A utilização da irrigação nesse sistema de produção proporciona maior confiabilidade ao pecuarista, pois além de evitar os verânicos, garante melhor aproveitamento das adubações.

Deste modo, conduziu-se este experimento para caracterizar o estado nutricional através da determinação dos teores foliares de macro e micronutrientes do capim Tanzânia (*Panicum maximum* Jacq.) submetido à adubação nitrogenada e alturas de cortes sob sistema de irrigação por aspersão ao longo de um ano nas condições do município de Goiânia - GO.

METODOLOGIA

O experimento foi conduzido em área da Escola de Veterinária da Universidade Federal de Goiás localizada a 16º 41" de latitude S, 49º 17" de longitude W com altitude média de 741 m., no período de janeiro de 2002 a fevereiro de 2003. O clima predominante, segundo a classificação de KÖPPEN (1948) é do tipo AW (quente e semi-úmido, com estação seca bem definida dos meses de maio a outubro) com médias anuais de temperatura (23,2ºC), precipitação (1759 mm) e umidade do ar (71%) com o menor índice no mês de agosto (BRASIL, 1992). Os dados referentes às variáveis climáticas do município de Goiânia, no período experimental foram fornecidos pelo Setor de Engenharia Rural da Escola de Agronomia da UFG, uma estação evaporimétrica de primeira classe (Tabela 1).

TABELA 1. Variáveis climáticas observadas durante o período experimental.

Meses/ano —	Temperatura m	Temperatura média do ar (⁰ C)				
ivieses/and —	Máxima	Mínima	média (mm)			
Janeiro/2002	30,3	14,7	173,7			
Fevereiro/2002	30,9	14,0	324,5			
Março/2002	31,5	12,9	233,2			
Abril/2002	32,0	11,1	26,4			
Maio/2002	32,0	10,4	8,0			
Junho/2002	31,8	9,7	0,0			
Julho/2002	32,0	10,6	0,0			
Agosto/2002	33,8	12,8	0,0			
Setembro/2002	34,1	15,1	86,4			
Outubro/2002	34,9	17,8	56,1			
Novembro/2002	31,1	19,3	186,9			
Dezembro/2002	30,8	19,6	231,6			
Janeiro/2003	29,9	19,9	327,7			
Fevereiro/2003	31,0	18,9	278,2			

O solo da área experimental é classificado em Latossolo Vermelho distrófico com as seguintes características de fertilidade: pH-CaCl₂= 5,1; Al = 0,00; H= 2,5; Mg= 0,9; Ca= 1,6 em cmol_c.dm³; K= 59; P (Mel)= 3,8 em mg.dm³; CTC= 5,45; V=

48,62 em % e 19 g/kg. A saturação por bases foi elevada para 70% via incorporação de calcário dolomítico anteriormente ao plantio, enquanto a adubação fosfatada de formação foi corrigida para 30 mg, utilizando-se o super fosfato simples em cobertura. Aplicou-se ainda o equivalente a 30 kg de FTE BR-12 ("fritted trace elements"), em sua composição química, encontram se: Zn, B, Cu, Fe, Mn, Mo,Co.

Para implantação do experimento utilizou-se uma área de 774 m², dividida em 18 parcelas de 40 m² (8 x 5 m). Os tratamentos foram constituídos por três doses de N: 200; 400 e 600 kg ha⁻¹, utilizando-se como fonte o sulfato de amônio e duas alturas de corte: 0,30 e 0,40 m. O delineamento experimental foi de blocos ao acaso com parcelas subdivididas, em esquema fatorial 3 x 2, com três repetições.

A adubação nitrogenada foi parcelada em função dos períodos, aplicando-se 65% nas águas e 35%, no período seco, respectivamente. Na adubação potássica de formação foram aplicados 60 kg.ha⁻¹ de K₂O ha⁻¹ e, posteriormente na manutenção, 15 kg.ha⁻¹ de K₂0 por tonelada de massa seca por corte (MONTEIRO, 1995). No período da seca foi utilizado irrigação por aspersão, com tubos enterrados, utilizando-se uma lâmina de água de 4 mm.dia, com turno de rega de sete dias, permanecendo ligado nos meses de maio a novembro de 2002.

As avaliações iniciaram-se em janeiro/2002, estendendo-se a fevereiro/2003, tendo sido realizados um total de nove cortes, sendo seis no período das águas, e três no período seco. Os cortes foram feitos manualmente, com o auxílio do quadrado de ferro (1,0 x 1,0 m), (FAVORETTO, 1993), observando-se as alturas de corte de 0,30 e 0,40 m da superfície do solo (RODRIGUES, 1986). Após cada corte procedeu-se a uniformização das parcelas experimentais incluindo as bordaduras, em seguida retirou-se os resíduos e realizou-se a adubação das parcelas.

O material coletado foi acondicionada em saco plástico, identificado e imediatamente transportado para o laboratório, sendo pesado e, posteriormente retirada uma sub amostra de aproximadamente 500 g, que em seguida foi colocada em estufa de ventilação forçada em sacos de papel, a uma temperatura média de 65°C, durante 72 horas, para fins da determinação da matéria seca parcial (SILVA & QUEIROZ, 2002). A seguir, as amostras foram moídas em moinho do tipo Willey, com peneira de um mm de malha, armazenadas em sacos de polietileno e identificadas. Para fins das determinações as amostras foram homogeneizadas por período, nos seus diferentes tratamentos, formando assim um pool.

As análises foliares foram realizadas no Laboratório de Solos do Departamento de Agricultura da Escola de Agronomia e Engenharia de Alimentos/UFG. Determinaram-se os teores de: Ca, S, P, Mg e K e dos micronutrientes: Cu, Fe, Mn e Zn. O S foi determinado por turbidimetria do sulfato de bário, o P por colorimetria do metavanadato e o K, por fotometria de chama de emissão, enquanto as concentrações de Ca, Mg, Zn, Cu, Mn e Fe, através da espectrofotometria de absorção atômica (MALAVOLTA et al., 1997).

Os resultados foram analisados utilizando-se o programa estatístico Sistema de Análise de Variância de Dados Balanceados (SISVAR), de acordo com FERREIRA (2000), comparando-se as médias pelo teste Tukey, a 5% de significância. Foram realizadas analises estatísticas independentes para o período das águas e da seca. O modelo estatístico proposto foi:

$$\mathbf{Y}_{ijk} = \mu + \mathbf{E}_i + \mathbf{A}_j + \mathbf{C}_k + \mathbf{I}_{jk} + \mathbf{e}_{ijk}$$
, onde:

Y iik = variáveis independentes;

μ = constante variável a todas observações;

 E_i = efeito dos períodos;

 A_i = efeito das doses de N;

C_k =efeito das alturas de corte

I_{jk} = interação entre doses de nitrogênio e altura de corte

e_{iik} = erro experimental, contando efeitos não controlados.

RESULTADOS E DISCUSSÃO

As concentrações foliares de macrominerais não sofreram variações significativas (P>0,05) em função das adubações nitrogenadas, nas alturas de corte de 0,30 e 0,40 m da superfície do solo (Tabelas 2 e 3).

Os teores de P no período das águas foram semelhantes nas duas alturas, apresentando uma concentração média de 0,41 e 0,38 g.kg, respectivamente nos períodos chuvoso e seco. Os valores são semelhantes aos encontrados por CECATO et al. (2001) que observaram concentrações médias de 0,38 a 0,49 g.kg, no capim-Tanzânia em diferentes alturas de pastejo. Concentrações superiores, na ordem de 1,4 a 1,5 g kg⁻¹ para o mesmo capim foram relatadas por MACEDO et al. (1993); EUCLIDES (1995) e COSTA (2003). De acordo com NRC (1996) os requerimentos mínimos de P para o gado de leite são de 2,5 a 4,8 g.kg e para gado de corte, a exigência é de 1,2 a 3,4 g.kg.

O K apresentou concentrações médias de 14,5 e 13,1 g.kg no período das águas e 14,0 e 10,6 g.kg no período seco nas alturas de corte de 0,30 e 0,40 m respectivamente. EUCLIDES (1995) observou concentrações semelhantes para o capim-Tanzânia, da ordem de 14,1 g.kg. Concentrações mais elevadas foram relatados por COSTA et al. (2001) quando trabalharam com o capim-Mombaça submetido a adubação nitrogenada, cujas médias foram de 15,20 g.kg, porém, com uma redução na concentração do K em função do acréscimo de N.

TABELA 2. Concentrações médias de P, K, S, Ca e Mg na parte aérea do capim-Tanzânia nas duas alturas de cortes, avaliado no período das águas.

ranzama nas duas alturas de cortes, avaliado no período das aguas.												
	Alturas de corte (m)											
	-	0,30 0,40										
Doses de		· · · · · · · · · · · · · · · · · · ·										
N		Variáveis (g.kg)										
(kg.ha ⁻¹)	Р	K	S	Ca	Mg	Р	K	S	Ca	Mg		
200	0,39	14,0	1,4	4,2	2,4	0,39	12,6	1,5	4,3	2,4		
400	0,40	14,6	1,5	4,4	2,8	0,41	13,1	1,5	4,4	2,5		
600	0,43	14,9	1,5	4,5	2,5	0,44	13,6	1,6	4,5	2,7		
Média	0,41	14,5	1,5	4,3	2,5	0,41	13,1	1,5	4,4	2,5		
CV (%)	6,22	13,22	7,42	12,67	10,71	6,13	12,75	7,39	12,60	9,97		

Segundo MALAVOLTA et al. (1986) a concentração ideal de potássio no tecido da planta encontra-se entre 9,4 a 16,8 g.kg. De acordo com NRC (1996), os requerimentos para gado de corte nas fases de crescimento e engorda e inicio de lactação é da ordem de seis a sete 7 g.kg, e a recomendação do NRC (1989) para gado de leite está na faixa de nove a 10 g.kg. Portanto, as concentrações determinadas nesta pesquisa atendem satisfatoriamente a ambas categorias.

As concentrações de S apresentaram maiores valores no período das águas, com média de 1,5 g.kg em ambas alturas. No período seco, essas concentrações apresentaram valores médios de 0,47 e 0,46 g.kg, nas alturas de cortes de 0,30 e

0,40, respectivamente. PINTO et al. (2002) determinaram concentrações de S para as doses 0, 100 e 200 de kg de N.ha⁻¹, em que os valores médios foram de 1,4 e 1,5 g.kg. No entanto COSTA et al. (2001), não observaram diferença nas concentrações de enxofre no mesmo capim, nos períodos de verão (1,39 g.kg), e no inverno (1,14 g.kg), corroborando os resultados do presente trabalho. O requerimento de S na dieta de gado de corte, segundo NRC (1996) é de 1,5 g.kg. De acordo com as concentrações obtidas neste trabalho, as exigências serão supridas no período das águas, enquanto que para o período seco, necessário se faz uma suplementação deste mineral.

Com relação ao Ca constatou-se que não houve (P<0,05) nos valores entres os tratamentos. CANO et al. (2004) observaram que os pastos mantidos em alturas menores apresentaram maior concentração de Ca tanto na lâmina foliar quanto no colmo, com redução à medida que se elevou a altura do dossel. Esse comportamento pode estar associado ao avanço na maturidade nas plantas, pois, segundo GOMIDE (1976), a menor concentração de minerais com o avanço na maturidade das plantas deve-se, provavelmente, ao efeito de diluição dos mesmos na matéria seca produzida e acumulada. CECATO et al., (2001) relataram comportamento positivo das concentrações de cálcio em relação à altura de pasto de capim-Tanzãnia. O aumento da dose na adubação nitrogenada causou redução nas concentrações de cálcio no trabalho de PINTO et al. (2002).

TABELA 3. Concentrações médias de P, K, S, Ca e Mg na parte aérea do capim-Tanzânia nas duas alturas de corte, avaliado no período das secas.

ranzama nas duas alturas de corte, avaliado no periodo das secas.											
	Alturas de corte (m)										
Doses de N		0,30 0,40 Variáveis (g.kg)									
(kg.ha ⁻¹)	Р	K	S	Ca	Mg	Р	K	S	Ca	Mg	
200	0,35	13,6	0,43	5,4	2,2	0,35	10,2	0,43	5,2	2,1	
400	0,37	14,0	0,46	5,4	2,3	0,36	10,5	0,45	5,1	2,1	
600	0,42	14,3	0,52	5,7	2,8	0,40	11,1	0,51	5,0	2,3	
Média	0,38	14,0	0,47	5,5	2,4	0,38	10,6	0,46	5,1	2,2	
CV (%)	4,94	9,52	15,46	5,42	14,59	4,30	8,70	15,5	5,10	13,98	

No período das secas as concentrações de Ca foram maiores, com médias de 5,5 e 5,1 g.kg nas alturas de corte de 0,30 e 0,40 m, respectivamente. TEBALDI et al. (1997) relataram que os teores de cálcio foram maiores na época seca, na maioria dos locais e variaram de 0.25 a 0.82 % na MS das forrageiras. No período das águas as concentrações médias apresentaram um decréscimo, com média de 4,3 e 4,4 g.kg, nas duas alturas de corte. Esta diferença pode ser explicada pelo processo de diluição do nutriente no tecido da planta, pois no período das águas o crescimento é mais acelerado e resulta em mais elevada produção de massa do que na seca. Resultados semelhantes foram encontrados por COSTA et al. (2001) com valores médios de cálcio no inverno (5,91 g.kg), foram maiores que no verão (4,01 g.kg). Segundo o NRC (1996), os requerimentos de Ca para gado de corte nas fases de crescimento e engorda, variam na faixa de 1,9 a 7,3 g.kg. Para gado Leiteiro o NRC (1989), recomenda uma variação da ordem de 4,3 a 7,7 g.kg. Portanto, os

teores de cálcio determinados neste experimento, basicamente atendem as exigências do gado Leiteiro e de corte.

As concentrações de Mg em todos tratamentos estudados foram semelhantes apresentando valores médios de 2,5 g.kg nas duas alturas de corte no período das águas, e 2,4 e 2,2 g.kg para as alturas de 0,30 e 0,40 cm, no período seco. EUCLIDES (1995) quando avaliou o capim-Tanzânia, determinou concentrações de 2,4 g.kg e, COSTA (2003) também encontrou valores médios similares aos deste trabalho.

As exigências de Mg para gado de corte, de acordo com o NRC (1996), varia de uma a duas g.kg, enquanto que o NRC (1989) sugere para gado Leiteiro uma variação entre duas a 2,5 g.kg, exigências que são atendidas com as concentrações determinadas nesta pesquisa.

Avaliando-se as concentrações dos micronutrientes, nos dois períodos experimentais (Tabelas 5 e 6), observa-se que não houve efeito significativo (P>0,05) das adubações nitrogenadas e das alturas de corte.

As concentrações médias de Cu para o período das águas foram da ordem de 4,1 mg.kg para a altura de corte de 0,30 m e de 3,8 mg.kg para 0,40 m. No período seco as concentrações médias foram de 3,2 e 3,6 mg.kg, nas duas alturas de corte. Estes valores são inferiores àqueles observados por EUCLIDES (1995), quando avaliou os capins Tanzânia e Mombaça, com média de 6,0 mg.kg para ambos os capins, e por COSTA (2003) quando avaliou o capim-Tanzânia no período chuvoso, determinando uma concentração de 8,0 mg.kg e de 3,9 mg.kg, no período das secas (Tabelas 4 e 5).

Tomando-se por base as recomendações do NRC (1996), quanto às exigências nutricionais para gado de corte e leiteiro, as concentrações de cobre determinados neste trabalho não satisfazem os requerimentos dessas categorias, havendo, portanto a necessidade de suplementação.

TABELA 4. Concentrações médias de Cu, Mn, Zn e Fe na parte aérea do capim-Tanzânia nas duas alturas de corte, avaliado no período das águas.

	Alturas de corte (m)										
Doses de N			0								
(kg.ha ⁻¹)		Variáveis (mg.kg)									
	Cu	Mn	Zn	Fe	Cu	Mn	Zn	Fe			
200	3,9	65,3	17,5	101,3	3,8	63,8	17,5	128,9			
400	3,8	65,5	18,3	125,9	3,6	70,2	18,4	109,2			
600	4,4	74,7	19,4	106,0	4,0	72,9	19,3	106,3			
Média	4,1	68,4	18,4	111,0	3,8	68,0	18,4	114,8			
CV (%)	16,24	8,83	5,19	21,06	15,80	8,75	5,00	19,50			

No período das águas, a concentração de Mn não apresentaram diferenças em ambas alturas de corte, com média de 68,0 mg.kg. No período seco, essas concentrações médias foram de 79,5 e 80,8 mg.kg para as alturas de 0,30 e 0,40 m, respectivamente. EUCLIDES et al. (1995) avaliaram os capins Tanzânia, Mombaça e acesso BRA 7102, encontraram valores superiores, cujas concentrações foram de 100, 164 e 96 mg.kg. Já os resultados encontrados por COSTA (2003) foram

inferiores aos observados neste trabalho, tanto no período das águas, com média de 63,2 mg.kg, quanto no período da seca, com média de 63,4 mg.kg (Tabela 2 e 3).

Segundo o NRC (1996) os requerimentos em manganês para gado de corte e leiteiro, apresentam uma variação de 20 a 40 mg.kg. Desta forma, os conteúdos determinados neste trabalho atendem plenamente as exigências de ambas categorias.

As concentrações foliares de ferro apresentaram valores relativamente mais altos no período seco, com médias de 134,6 mg.kg para a altura de 0,30 m e de 148,0 mg.kg para 0,40 m. Nas águas as concentrações médias foram na ordem de 111,0 e 114,8 mg.kg nas duas alturas de corte, respectivamente. Os resultados obtidos por EUCLIDES et al. (1995) avaliando o acesso BRA 7102, quando obteve média de 205 mg.kg no período chuvoso, superam os valores determinados neste trabalho. Entretanto, as concentrações médias relatadas no mesmo trabalho com os capins Tanzânia e Mombaça (85 e 93 mg.kg,) bem como os resultados de COSTA (2003), também com capim-Tanzânia (81,4 mg.kg), no período das águas, se encontram abaixo da média obtida neste trabalho. Para o período seco, COSTA (2003) relatou concentrações médias de 195,1 mg.kg, portanto, é bem mais elevado do que o valor determinado na mesma época do ano neste trabalho.

TABELA 5. Concentrações médias de Cu, Mn, Zn e Fe na parte aérea do capim-Tanzânia nas duas alturas de corte, avaliado no período das secas.

	Altura de corte (m)									
Doses de N		0,30) (m)		0,40 (m)					
(kg.ha ⁻¹)	kg.ha ⁻¹) Variáveis ((mg.kg)			
-	Cu	Mn	Zn	Fe	Cu	Mn	Zn	Fe		
200	3,1	75,0	16,7	139,3	3,1	78,7	17,8	156,1		
400	2,6	81,3	16,3	121,6	3,6	92,4	16,3	155,0		
600	3,7	82,2	17,3	143,0	4,1	71,2	16,8	133,1		
Média	3,2	79,5	17,0	134,6	3,6	80,8	17,0	148,0		
CV (%)	18,66	15,45	7,37	14,33	19,9	17,10	7,90	16,30		

As exigências de Fe para gado de corte e leite, de acordo com o NRC (1996) são da ordem de 50 mg.kg, limite bastante inferior aos encontrados para os períodos das águas e seca nesta pesquisa.

As concentrações de Zn no capim-Tanzânia para o período das águas, apresentaram uma média de 18,4 mg.kg para ambas alturas de corte. No período seco, também não houve diferença entre as alturas de corte, onde a média foi de 17,0 mg.kg. Em experimento com capim-Colonião, GOMIDE (1978) determinou concentrações de zinco da ordem de 38 mg.kg, sendo portanto, bastante superior às médias encontradas neste trabalho para os períodos das águas e seca. Por outro lado, as concentrações obtidas superaram as de resultados obtidos por EUCLIDES (1995) quando avaliou os capins Tanzânia e Mombaça, com médias de 15 e 14 mg.kg, respectivamente.

De acordo com NRC (1996), os requerimentos de zinco para gado de corte são da ordem de 30 mg.kg, enquanto o NRC (1989), recomenda 40 mg.kg para gado leiteiro. Portanto, as concentrações determinadas se encontram abaixo das exigências mínimas, havendo necessidade de suplementação.

CONCLUSÕES

As concentrações foliares dos macros e micronutrientes não foram influenciadas em função da aplicação das doses de nitrogênio e das alturas de corte avaliadas.

REFERÊNCIAS BIBLIOGRÁFICAS

- BRASIL. MINISTÉRIO DA AGRICULTURA E REFORMA AGRÁRIA. Secretaria Nacional de irrigação, Departamento Nacional de Meteorologia. **Normais Climatológicas: 1961-1990.** Brasília,1992. 84 p.
- CANO, C. C. P.; CECATO, U.; CANTO, M. W.; SANTOS, G. T.; GALBEIRO, S.; MARTINS, E. N.; R. T. MIRA. Valor nutritivo do capim-Tanzânia (*Panicum maximum* jacq. cv. Tanzânia-1) pastejado em diferentes alturas. **Revista Brasileira de Zootecnia**, Viçosa, v.33, n.6, p.1959-1968, 2004 (Supl. 2).
- CECATO, U.; CASTRO, C. R. C.; CANTO, M. W.; PETERNELLI, M.; JOBIM, C. C. Perdas de forragem em capim Tanzânia (*Panicum maximum* Jacq. Tanzânia) manejado sob diferentes alturas sob pastejo. **Revista Brasileira de Zootecnia**, Viçosa, v. 30, n. 2, p. 295-301, 2001.
- CHEEKE, P. R. Applied animal nutritional: feed and feeding. Englewood Cliffs. New Jersey: Prentice Hall, 1991. 504p.
- CORSI, M.; MARTHA JUNIOR, G. B.; BALSALOBRE. M. A. A. Tendências e perspectivas da produção de bovinos sob pastejo. In: PEIXOTO, A. M.; PEDREIRA, C. G. S.; MOURA, J. C. **A planta forrageira no sistema de produção**. Piracicaba: FEALQ, 2001, p. 3-69.
- COSTA, M. N. X.; MATTOS, H. B.; BUENO, M. F.; DIAS, C. T. S.; LEITE, V. O. Influência de doses e épocas de adubação nitrogenada na produção estacional do capim Mombaça composição mineral. In: REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 38, Piracicaba, 2001. **Anais eletrônicos...**[CD-ROM], Piracicaba:SBZ, 2001.
- COSTA, K. A. P.; OLIVEIRA, I. P.; FRANÇA, A. F.S. GUIMARÃES, T. E. R. Teores de PB, MS, FDN e FDA na forragem de *Panicum maximum* cv. Tanzânia em função da aplicação de doses de nitrogênio, potássio e enxofre. In: REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 40, Santa Maria, 2003. **Anais eletrônico...** [CD-ROM], Santa Maria:SBZ, 2003.
- EUCLIDES, V. P. B.; MACEDO, M. C. M.; OLIVEIRA, M. P. Avaliação de ecótipos de *Panicum maximum* sob pastejo em pequenas parcelas. In: REUNIAL ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 32, 1995. **Anais...** 1995, p. 97-99.
- FAVORETTO, V. **Metodologia de avaliação de forrageiras**. São Paulo, 1993. 8p. (Curso de Pós-Graduação em Zootecnia) Faculdade de Ciências Agrárias e Veterinária, Universidade Estadual de São Paulo. [Mimeografado].

- FERREIRA, D. F. Análises estatísticas por meio do Sisvar para Windons versão 4.0. In: REUNIÃO ANUAL DA REGIÃO BRASILEIRA DA SOCIEDADE INTERNACIONAL DE BIOMETRIA, 45, 2000, São Carlos. **Anais...** São Carlos:UFSCar, 2000, p. 225-258.
- GOMIDE, J. A. Composição mineral de gramíneas leguminosas forrageiras tropicais. In: SIMPÓSIO LATINO-AMERICANO SOBRE PESQUISA EM NUTRIÇÃO MINERAL DERUMINANTES E PASTAGENS, 1., 1976, Belo Horizonte. **Anais...** Belo Horizonte: EPAMIG, 1976. p.20-33.
- GOMIDE, J. A. Simpósio Latinoamericano sobre investigaciones em nutricion mineral de los ruminantes em pastoreo. University of Florida, Gainesville, 1978. 39p.
- KÖPPEN, W. Climatologia: con un Estúdio de los Climas de la Tierra. Fondo de Cultura Econômica, México, 1948, 466p. Traduzido para o Espanhol por Pedro Henchiehs Pérez
- MACEDO, M. C. M.; EUCLIDES, V. P.B.; OLIVEIRA, M. P. Seasonal changes in chemical composition of cultivated tropical grasses in the savannas of Brazil. In: INTERNATIONAL GRASSLAND CONGRESS, 17, 1993. **Anais...** 1993, p. 2000 2002. Palmerston North: New Zealand Grassland Association.
- MALAVOLTA, E.; LIEM, T. H.; PRIMAVESI, A. C. P. A. Exigências nutricionais das plantas forrageiras. In: CALAGEM E ADUBAÇÃO DE PASTAGENS, Piracicaba, 1986. **Anais...** Piracicaba: ABPF, 1986. p. 31-76.
- MALAVOLTA, E.; VITTI, G. C.; OLIVEIRA, S. A. **Avaliação do estado nutricional das plantas: princípio e aplicações**. Piracicaba: Associação Brasileira da Potassa e do Fosfato, 1997, 319 p.
- MARTHA JUNIOR, G. B.; VILELA, L. **Pastagens no Cerrado**: baixa produtividade pelo uso limitado de fertilizantes em pastagens. Planaltina: Embrapa Cerrados, 2002. 32 p. (Embrapa Cerrados. Documentos, 50).
- McDOWELL, L. R. Minerais para ruminantes sob pastejo em regiões tropicais, enfatizando o Brasil. University of Florida Inst. of Food and Agricultural Sciences: IMC AGRICO. 3ª ed., 1999. 92 p.
- MELLO, R.; NORNBERG, J. L.; DAVID, D. B.; PRETTO, F. P. Composição mineral do sorgo para corte e/ou pastejo. In: REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 40., 2003, Santa Maria, RS. **Anais**... Santa Maria: UFSM, 2003. 752p. CD-ROM.
- MONTEIRO, F.A. Nutrição mineral e adubação. In: SMPÓSIO SOBRE MANEJO DA PASTAGEM, 12, Piracicaba, 1995. **Anais....** Piracicaba: FEALQ, 1995, p.219-244.
- NRC "Nutrient Requirements of Domestic Animals, Nutrients Requirements of Beef Cattle". 6 ed., National Research Council, Washington, 1989.
- NRC "Nutrient Requirements of Domestic Animals, Nutrients Requirements of Beef Cattle". 7 ed., National Research Council, Washington, 1996.

- PINTO, J. C.; BELARMINO, M. C. J.; ROCHA, G. P. Composição mineral da forragem de capim Tanzânia em função da aplicação de superfosfato simples e sulfato de amônio. In: REUNIÃO ANUAL DA SOCIEDADE BRASILEIRA DE ZOOTECNIA, 39, 2002, Recife, **Anais eletrônicos...** [CD-ROM], Recife: SBZ, 2002.
- PRIMAVESI, A. C.; PRIMAVESI, O.; CORREA, L. A.; CANTARELLA, H.; SILVA, A. G.; FREITAS, A. R.; VIVALDI, L. J. Adubação nitrogenada em capim-coastcross: efeitos na extração de nutrientes e recuperação aparente do nitrogênio. **Revista Brasileira de Zootecnia**, Viçosa, v.33, p.68-78, 2004.
- RODRIGUES, L.R.A. Espécies, forrageiras para pastagens: gramíneas. In: SIMPÓSIO SOBRE MANEJO DE PASTAGENS, 8, Piracicaba, 1986. **Anais...**Piracicaba: FEALQ, p.357-387, 1986.
- SANO, E. E., A. O. BARCELOS, H. S. BEZERRA. **Área e distribuição espacial de pastagem cultivadas no cerrado brasileiro.** Embrapa Cerrados, Planaltina. 1999. (Boletim de Pesquisa, 3).
- SANTOS, P.M.; BALSALOBRE, M.A.A.; CORSI, M. Efeito da freqüência de pastejo e da época do ano sobre a produção e a qualidade em *Panicum maximum* cvs. Tanzânia e Mombaça. **Revista Brasileira de Zootecnia**, Viçosa, v.28, p.244-249, 1999.
- SILVA, D.J.; QUEIROZ, A. C. **Análise de alimentos** (Métodos químicos e biológicos). Viçosa: Universidade Federal de Viçosa, 2002. 239p.
- TEBALDI, F. L. H.; SILVA, J. F. C.; MALDONADO, H.; FERNANDES, A. M. Níveis críticos de minerais em forrageiras e água da região norte do estado do Rio de Janeiro, Brasil. **Archives Latinoamericano Prodution Animal**, v. 5, p. 248-250, 1997. (Supl. 1).